55 research outputs found

    Dense Motion Estimation for Smoke

    Full text link
    Motion estimation for highly dynamic phenomena such as smoke is an open challenge for Computer Vision. Traditional dense motion estimation algorithms have difficulties with non-rigid and large motions, both of which are frequently observed in smoke motion. We propose an algorithm for dense motion estimation of smoke. Our algorithm is robust, fast, and has better performance over different types of smoke compared to other dense motion estimation algorithms, including state of the art and neural network approaches. The key to our contribution is to use skeletal flow, without explicit point matching, to provide a sparse flow. This sparse flow is upgraded to a dense flow. In this paper we describe our algorithm in greater detail, and provide experimental evidence to support our claims.Comment: ACCV201

    Multiscale Weighted Ensemble Kalman Filter for Fluid Flow Estimation

    Get PDF
    International audienceThis paper proposes a novel multi-scale uid ow data as- similation approach, which integrates and complements the advantages of a Bayesian sequential assimilation technique, the Weighted Ensem- ble Kalman lter (WEnKF) [12], and an improved multiscale stochastic formulation of the Lucas-Kanade (LK) estimator. The proposed scheme enables to enforce a physically plausible dynamical consistency of the estimated motion elds along the image sequence.

    Vortex Tracking in High Density Vector Fields

    Full text link

    Divergence-Free Motion Estimation

    Get PDF
    International audienceThis paper describes an innovative approach to estimate motion from image observations of divergence-free flows. Unlike most state-of-the-art methods, which only minimize the divergence of the motion field, our approach utilizes the vorticity-velocity formalism in order to construct a motion field in the subspace of divergence free functions. A 4DVAR-like image assimilation method is used to generate an estimate of the vorticity field given image observations. Given that vorticity estimate, the motion is obtained solving the Poisson equation. Results are illustrated on synthetic image observations and compared to those obtained with state-of-the-art methods, in order to quantify the improvements brought by the presented approach. The method is then applied to ocean satellite data to demonstrate its performance on the real images
    corecore